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Backg round: Since 2001, researchers have examined the human genome (G) mainly to discover 
causes of disease, despite evidence that G explains relatively little risk. We posit that unexplained 
disease risks are caused by the expcsome (E; representing all exposures) and G x E interactions. 
Thuptiologic research has been hampered by scientists' continuing reliance on low-tech methods 
to characterize E compared with hiI-tech  omics for charazerizing G. 

o Bject ives: Because exposures are inherently chemical in nature and arise from both endogenous 
and exogenous sources, blood specimens can be used to characterize exposomes. To explore 
the "blood exposome" and its connection to disease, we sought human blood concentrations 
of many chemicals, along with their sources, evidence of chronic-disease risks, and numbers of 
metabolic pathways. 

Methods: From the literature we obtained human blood concentrations of 1,561 small molecules 
and metals derived from foods, drucys  pollutants, and endogenous procesees. We mapped chemical 
similarities after weighting by blood concentrations, disea3e-risk citations, and numbers of human 
metabolic pathways. 

resu I ts: Blood concentrations spanned 11 orders of magnitude and were indistinguishable for 
endogenous and food chemicals and drucy,, whereas these of pollutants were 1,000 times lower. 
Chemical similarities mapped by dismee rislcswere equally distributed by 	categories, but these 
mapped by metabolic pathWayS were dominated by endogenous molecules and essential nutrients, 

onciusi o ns: For studies of disease etiology, the complexity of human exposures motivates charac-
terization of the blood expcsome, which includes all biologically active chemicals. Because mast 
small molecules in blood are not human metabolites, investigations of causal pathways should 
expand beyond the endogenous metabolome. 

citation: Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A. 2014. Thblood exposome 
and its role in discovering causes of disease. Environ Health Perspect 122:769-774; http://cbcdoi. 
org/10.1289/ehp.1308015  

Introduction 
Worldwide mortality is dominated by non-
communicable diseases, particularly cardio-
vascular disease (29%), cancer (15%), and 
respiratory diSEESES (7%) (Lozano et al. 2012). 
Thesehronic diseases result from the com - 
bined effetisof the human genome (G) and 
exposome (E; representing all exposures). 
(Although geneticists use the term "environ-
ment" to denote nongenetic factors, many 
scientists and the general public equate 
"environment" with "pollution," which 
represents only one class of exposures. We 
use the term "exposome" to encompass all 
exogenous and endogenous exposures.) But 
attribution of risks to G and E and their 
interaction (G x E) has been problematic 
because of disparities in characterizing genes 
and exposures (Rappaport and Smith 2010; 
Wild 2005). In fact, sequencing the human 
genome in 2001 permitted researchers to 
comprehensively explore G and its progeny 
(i.e., genome —> transoriptome —> proteome 
—> rretabolome) but did not promote detailed 
characterization of E, which in epidemiologi-
cal and clinical research still relies on question-
naires, geographical information, and targeted 
surveys (Ezzati and Riboli 2013; Lim et al. 
2012). In addition, the study of external and  

internal exposures (including endogenous 
chemicals) has focused on a limited number 
of molecules and metals that cannot com-
pare with the resolution of genome-wide 
association studies (GWAS). 

Interestingly, the variation in chronic-
disease incidence explained by scores of 
GWAS has been so small that searches 
are under way for "missing heritability" 
(Goldstein 2009; Manolio et al. 2009) and 
"genetic dark matter" (Galvan et al. 2010; 
Martin and Chang 2012; Melhem and Devlin 
2010). Even assuming that a host of rare 
alleles account for some unexplained pheno-
typic variation (Kraft and Hunter 2009), it 
is re unable to posit that E and G x E are 
the primary causes of chronic diseases, as 
suggested by studies of fami I ies and twins 
(Hemminki et al. 2006; Lichtenstein et al. 
2000), epigenetics (Gluckman et al. 2008, 
2010; Smith and Meiner 2013), and gene-
expression profilesthat change with lifestyles 
and infections (Chen et al. 2012; Preininger 
et al. 2013). In fact, as shown in Figure 1, 
about half of the 50 million global deaths in 
2010 were attributed to a small set of expo-
sures, dominated by particulate air pollu-
tion (combined effects of ambient particles 
and household smoke), smoking (active and  

passive), and diet (Lim et al. 2012). This 
conundrum—where scientists use high-tech 
omics to detect small effects of G but rely 
upon low-tech methods to study potentially 
large effectsof E and G x E—has produced a 
may uneven record of etiologic research. 

One way to level the playing fieldwould 
be to explore health impacts of E and G x E 
with exposome-wide association studies 
(EWAS) (Rappaport 2012) that obtain com-
prehensive, quantitative measurements of 
chemicals in human biospecimens (Holmes 
et al. 2008; Ritchie et al. 2010; Wang Z 
et al. 2011). This approach recognizes that 
meaningful exposures are mediated in the 
internal chemical environment (Rappaport 
and Smith 2010) by endogenous signal-
ing molecules, exogenous chemicals, and 
reactive electrophi les (E-factors) that com-
municate with cells, tissues, and organs via 
mutations, posttranslational modifications, 
enzymes, transcription factors, and recep-
tors (G-factors) (Brodsky and Medzhitov 
2009; Liebler 2008; Menon and Manning 
2013). Because blood transports chemicals 
to and from tissues and represents a reservoir 
of all endogenous and exogenous chemicals 
in the body at a given time (Nicholson et al. 
2012b), the blood exposome offers a parsi-
monious but esEentially unexplored reams for 
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Figure 1. Risk factors for exposures that contribute to chronic-disease mortality. The chart was compiled from 
World Health Organization estimates of exposures affecting 50 million global deaths in 2010 (Lim et al. 2012). 
(Because some risk factors may be correlated, the indicated percentages are approximate.) 
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Figure 2. Small molecules and metals in human blood. Each curve represents the cumulative distribution of 
chemical concentrations from a particular source category (pollutants, n = 94; drugs, n =49; food chemicals, 
n = 195; endogenous chemicals, n = 1,223). Abbreviations: BCE 100, 2,2',4,4',6-pentabromodiphenyl ether; 
DDE, 1,1-bis-(4-chlorophenyI)-2,2-dichloroethene;CCDD, 1,2,3,4,6,7,8,9-octachlorooxanthrene; PCB 170, 
2,2',3,3',4,4',5-heptachloro-1,1'-biphenyl. 
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interrogating biologically relevant exposures 
(Rappaport 2012). 

Methods 
Souram of data. To investigate the portion 
of the blood exposome represented by 
small molecules and metals, we obtained 
blood concentrations of 1,561 chemicals 
from samples of healthy human popula-
tions compiled by the Human Metabolome 
Database (H M DB; http://www.hmdb. 
ca) (Wishart et al. 2013) (1,451 chemicals)  

and the U.S. National Health and Nutrition 
Examination Survey (N HANES) [Centers 
for Disease Control and Prevention (CDC) 
2009, 2012, 2013] (110 chemicals). Each 
molecule or metal was assigned one of the 
following four source categories: a) endog-
enous chemical (from intrinsic human 
metabolism; n = 1,223), b) food chemical 
(n = 195), c) pollutant (n = 94), or d) drug 
(n = 49). (The process for selecting chemi-
cals is described in Supplemental Material, 
pp. 2-4.) To link individual chemicals with 
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chronic-disease risks and systems biology, we 
retrieved additional data from the National 
Center for Biotechnology Information data-
boom PubMed (http://www.ncbi.nlm.nih. 
gov/pubmed;  citations on chronic-dissae risk 
factors) and Biosystems (http://www.ncbi. 
nlm.nih.gov/biosystems/;  data on human 
metabolic pathways). Although modest in 
size, these samples allowed us to explore the 
range of human blood concentrations, to test 
for differencesin median levels across source 
categories and to map chemical simi lari-
ties after weighting by blood concentration, 
diorcir,-risk citations, and human meta-
bolic pathways. Relevant data are given in 
Supplemental Material, Table S1. 

HMDB entries were from metabolic 
studies in mostly Western populations, and 
included endogenous and food chemicals, 
drugs, and pollutants; N HANES included 
only nutrientsand pollutants in U.S. popula-
tions. When a given chemical was present in 
both of these databases, we used N HANES 
concentrations. If the same chemical had 
been reported in more than onestudy or year, 
we used the geometric mean concentration. 
Numbers of individual subjects varied across 
chemicals. Drug concentrationsvvere reported 
in clinical trials at therapeutic doses. 

We used Chemical Abstral Service (CAS) 
registry number(s) ffi the query parareter to 
saarch PubMed along with medical subject 
headings (MeSH) annotations to retrieve the 
citations describing epidemiological studies. 
The search string was 

(blood OR plasma OR serum) AND ("risk 
factors"[MeSH Terms] OR "relative risk"" 
OR "odds ratio"" OR "hazard ration + CAS 
number + [EC/RN number]("journal article"[pt] 
NOT review[pt] NOT "meta analysis"[pt]) 
(hasabstract[text] AND "humans"[MeSH 
Terms]) english[lang] (neoplasms[mesh] OR 
diabetes[rtirotii] OR "cardiovascular disaaass"[ifir±ti] 
OR "Respiratory Tract DiSBEEES11[Hiebil]). 

For retrieval of pathway hits, PubChem 
identifiers for each compound were searched 
against the Biosystems database. Chemical 
similarity maps were generated using 
MetaMapp (http://rretampp.fielinlap.ucclavis. 

e). 
Statistical analys& Differenoesin median 

blood concentrations across source categories 
were evaluated with Kruskal-Wallis tests 
via SAS for Windows (v.9.3) (SAS Institute 
Inc., Cary, NC). 

Results 
Blood concentrations. Cumulative distribu-
tions of blood concentrations are shown in 
Figure 2 for the four sources of chemicals. 
Concentrations ranged from 160 fM to 
140 mM, a staggering 11 orders of nujnitude. 
Within each category, concentrations cov-
ered a 107-fold range. Median blood levels 
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of endogenous chemicals (0.94 pM ), food 
chemicals (1.00 pM), and drugs (0.30 pM) 
were not significantly different (p = 0.246). 
In contrast, pollutant concentrations were 
1,000 times lower (median, 2.4 x 10-4  pM, 
p < 0.0001), and only pollutants with blood 
levels above the median value overlapped with 
other distributions. 

Chemical-similarity maps Endogenous 
and dietary molecules comprised > 100 
chemical classes, particularly lipids, steroids, 
amino acids, fatty adds, and nucleotides (see 
Supplemental Material, Table S1). In addi-
tion to nutrients and vitamins, food chemi-
cals included such bioactive molecules as 
aflatoxinB1 (a carcinogen from mold-inftuted 
grains and nuts), solanidine (a toxin from 
potatoes), sulforaphane (a DNA-protective 
ijent from cruciferous vegetables), acetalde-
hyde (a mutayn from metthol ism of alcohol), 
gen istei n (an endocrine-disrupting chemical 
from soy products) and trimethylami ne-N-
oxide (from metabolism of choline and 
cam iti ne; a q sported cause of atherosclerosis). 
Exogenous pollutants were primarily halo-
genated compounds-tr i ha I omet ha nes, 
chlorinated pesticides, perf I uor i natecl com-
pounds, polychlorinated biphenyls (PCBs), 
brominated diphenyl ethers, and some chlo-
rinated dioxins and furans-and metals, but 
also included a few volatile aromatic species 
(notably benmre) and metabolites of nicotine. 
ThisliNersity is illustrated in Figure 3A, which 
maps the 1,561 chemicals by their structural 
similarities (Barupal et al. 2012), with symbol 
sizes indicating blood concentrations. Shown 
in Figure 3A, constellations of biochemical 
classes were populated largely by endorynous 
and food chemicals, whereas drugs clustered 
with aromatic compounds [between ri rat) loca-
tions AN (alkaloids) and BD (benzoic acids 
and phenols)] and pollutants were mainly at 
map peripheries [e.g., locations AH (organo-
chlorine pesticides) and AX (PCBs)]. Metals 
and metalloids originated from foods (six 
mast abundant: sodium, potassium, iron, cal-
cium, phosphorus, and magnesium), pollu-
tion (six most abundant: silicon, strontium, 
nickel, lead, beryllium, and arnic), and one 
drug (lithium). 

Because citations to risk fthtorssummarim 
epidemiological and clinical evidence asociat-
ing a chemical with disease phenotypes, we 
found PubMed citations for 960 searchable 
substances in our inventory (only chemicals 
with CAS registry numbers were searchable 
in PubMed), and obtained 19,656 citations 
matching 336 (35%) of those chemicals. 
(Numbers of matching citations are included 
in Supplemental Material, Table S1.) Thelis - 
tribution of citations per chemical was highly 
skewed, with a median value of 7.5 and a 
maximum of 4,499 (cholesterol). The large 
numbers of citations per chemical and positive 

Figure 3. Chemical-similarity maps of small molecules and metals in human blood (Tanimoto coefficien 0.7; 
symbol color represents the source category). 
(A) All chemicals (n = 1,561; symbol size reflects the blood/serum concentration). Map locations: AA, 
leucotrienes; AB, perfluorinatedcompounds; AC, alkylamines; AD, pteridines; AE, pyrimidine nucleotides; 
AF, aliphatic amino acids and derivatives; AG, sphingolipids; AH, organochlorine pesticides; Al, prenol lipids; 
AJ, sulfur compounds; AK, flavonoidsAL, pyrroles and indoles; AM, pyridines; AN, alkaloids; AO, benzoic 
acids and phenols; AP, eicosanoids; AO, fatty acids and fatty amines; AR, steroids; AS, organic acids; AT, 
monosaccharides; AU, phosphates; AV, alcohols; AW, fatty acid esters and conjugates; AX, polychlorinated 
biphenyls; AY, simple aromatics; AZ, chlorinated dioxins and furans; BA, sulfates and nitrites/nitrates; BB, 
purine nucleotides; BC, aromatic amino acids and derivatives; BD, benzoic acids and phenols. 
(8) Matching chemicals from (A) cited in studies of chronic-disease risks (n = 336;  symbol size reflectsthe 
number of citations). Map locations: 1, selenium; 2, nitric oxide; 3, folic acid; 4, vitamin B12; 5, metformin; 
6, cotinine; 7, lead; 8, bilirubin; 9, atorvastatin; 10, ascorbic acid; 11, thyroxine; 12 norepinephrine; 13, aspirin; 
14, eicosapentaenoic acid; 15, magnesium; 16, calcium; 17, sodium; 18, uric acid; 19, creatinine; 20, 1-arginine; 
21, homocysteine; 22, i-methionine; 23, i-valine; 24, 13-carotene; 25, vitamin A; 26, vitamin D3; 27, choles-
terol; 28, simvastatin; 29, aldosterone; 30, cortisol; 31, testosterone; 32, malondialdehyde; 33, d-glucose; 
34, estradiol; 35, PCBs; 36, ethanol. 
(C) Matching chemicals from (A) having human metabolic pathways (n = 658; symbol size reflectsthe number 
of pathways). Map locations: 1, adenosine triphosphate; 2, hydrogen peroxide; 3, adenosine diphosphate; 4, 
guanosine diphosphate; 5, guanosine triphosphate; 6, NADPH; 7, cyclic AMP; 8, adenosine monophosphate; 
9, NADH; 10, NAD; 11, FAD; 12, manganese; 13, sodium; 14, calcium; 15, zinc; 16, magnesium; 17, potassium; 
18, norepinephrine; 19, epinephrine; 20, 1-phenylalanine; 21, 1-tyrosine; 22, dopamine; 23, palmitic acid; 
24, cholesterol; 25, 1-glutamic acid; 26, adenine; 27, 1-aspartic acid; 28, oxoglutaric acid; 29, pyruvic acid; 
30, phosphate; 31, pyrophosphate; 32, formic acid; 33, uridine 5'-monophosphate; 34, uridine 5'-diphosphate; 
35, i-arginine; 36, i-alanine; 37, 1-cysteine; 38, 1-serine; 39, arachodonic acid; 40, a-linolenic acid. 
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skewness probably reflectpublication bias in 
hypothesis-driven epidemiological studies 
and clinical trials. Median numbers of cita-
tions varied 2-fold across source categories 
(drugs, 10; endogenous, 6; food chemicals, 13; 
pollutants, 6; p = 0.041). When food chemi-
cats vtere removed, median values for the other 
categories were not significantly different 
(p = 0.307). Thiindicates that a typical food 
chemical was about twice a likely to be cited 
a a chronic disease-risk factor than a chemical 
from another category. 

The chemical-similarity map for these 
336 chemicals is shown in Figure 3B, where 
symbol size reflectsthe number of citations. 
This map shared prominent clustering pat-
terns with Figure 3A, except that individual 
lipid molecules were largely absent (lipids 
tend to be reported as classes rather than 
discrete molecules in clinical and epidemio-
logical studies) and most endogenous mol-
ecules with large blood concentrations had 
few PubMed citations. Several highly cited 
chemicals are familiar biomarkers of human 
diseeses and causal exposures: for example, 
cholesterol (n = 4,449, cardiovascular disease), 
folic acid (n = 595, cancer and neural-tube 
defects), lead (n = 65, cardiovascular and 
neurological diseases), and cotinine (n = 78, 
smoking-related diseases), along with vita-
mins, hormones, and antioxidants. Aspirin 
was the most-cited drug (n = 515), followed 
by atorvastatin (n= 206). 

Sequencing the human genome motivated 
mapping of G-centric molecular pathways at 
multiple levels and made metabolites with 
annotated pathways desirable targets for slis-
terns biology (Chen et al. 2012). In match-
ing records retrieved from the Biosystems 
database for chemicals in our inventory, at 
least one human metabolic pathway had 
been reported for 658 of them (42%). (The 
numbers of pathways reported are included 
in Supplemental Material, Table S1.) Median 
numbers of pathways varied 6-fold across 
sources, with pollutants being significantly 
understudied (drugs, 4; endogenous, 6; food 
chemicals, 4; pollutants, 1; p < 0.0001). The 
chemical-similarity riup of these 658 chemi-
cals is shown in Figure 3C, with symbol size 
representing the number of pathways. The 
largest numbers of pathways corresponded to 
purine-nucleotide phosphates (maximum of 
707 for adenosine triphosphate), amino acids 
and derivatives, fatty acids, and dietary metals. 
In contrast to prominent di,n-sa-risk cita-
tions that were distributed more or lees evenly 
across source categories (Figure 3B), chemicals 
with many pathways were overwhelmingly 
endogenous molecules and essential nutrients 
(Figure 3C). 

Became the sets of PubMed and Bicsystems 
hits were not completely overlapping, we 
repeated the analysis of source categories  

for the 267 chemicals that had at least one 
disease-risk citation and at least one human 
metabolic pathway. Results from this subset 
of chemicals were essentially the same as for 
the complete data sets. Median numbers of 
PubMed hits varied 2.4-fold wroEssourcecate-
gories (drugs, 7; endocynous, 7; food chemi-
cals, 17; pollutants, 9; p = 0.0261) but did not 
differsignificantlywhen food chemicals were 
removed (p = 0.4135). In contrast, median 
numbers of human metabolic pathways var-
ied 12-fold wroEs source categories, and were 
much smaller for drugs and pollutants than 
for endogenous and food chemicals (drugs, 4; 
endogenous, 11.5; food chemicals, 12; 
pollutants, 1; p< 0.0001). 

Discussion 
Discovering causes of disease. Data summa-
rized in Figure 1 suggest that only about half 
of the current burden of chronic diseases can 
be attributed to known exposures and thus 
motivate more thorough scrutiny of the expo-
some to find unknown causes. This will be 
challenging because of the ruirarkdDle ranges 
of human exposures wross sourceb and chemi-
cal classes that are displayed in Figures 2 
and 3. Such extreme variation suggests 
that knowledge-driven studies are ill suited 
for discovering unknown causes of chronic 
diseases. There are simply too many diverse  
chemicals covering too great a concentration 
range to formulate reasonable hypotheses. 
We should narrow the list of chemical candi-
dates by using EWAS to finddiscriminating 
exposures in bicFpecimens from diseased and 
healthy subjects (Holmes et al. 2008; Patel 
et al. 2010; Rappaport 2012; Ritchie et al. 
2010; Wang Z et al. 2011), essentially fol-
lowing the same strategy as GWAS. Once 
identified,these chemicals can be targeted to 
i nvest igate sou rces, causality, disease mecha-
nisms, and interventions (Rappaport 2012). 
A good example of this two-stage strategy 
was provided by Hazen and coworkers, who 
linked risks of cardiovascular disease with 
blood concentrations of trimethylamine-N-
oxide, a metabolite of choline and carnitine 
derived from microbial/human metabolism 
(Kceth et al. 2013; Tang et al. 2013; Wang Z 
et al. 2011). 

Optimally, EWAS would employ untar-
geted methods to compare blood exposornes 
between cases and controls nested in cohort 
studies. Although untargeted high-resolution 
mass spectrometry (MS) can detect > 30,000 
features of small molecules in human serum 
(Ivanivic et al. 2013), use of untargeted 
platforms in our laboratories cannot reli-
ably measure blood concentrations less than 
approximately 0.1 pM in 50 pL of serum. 
Given the extraordinary dynamic range of 
small molecules and metals (Figure 2), 
untargeted analyses may miss about 90%  

of pollutants and 30% of endogenous and 
food chemicals, including hormones (e.g., 
estradiol, testosterone), carcinogens (e.g., 
aflatoxin B1, benzene), and endocrine dis-
ruptors [e.g., genistein, PCBs, D DE (1,1-bis-
(4-ch I orophenyl )-2,2-d ich I oroethene)] . Thus, 
although increased sensitivity can be antici-
pated with untargeted MS, EWAS currently 
requi re a combination of untargeted (Holmes 
et al. 2008; Ritchieet al. 2010; Wang Z et al. 
2011) and semitargeted (Patel et al. 2010) 
methods to quantify exposures. In addition, 
as for the Human Genome Project (National 
Human Genome Research Institute 2013), 
different laboratories could addr 	specific 
parts of the exposome in a complementary 
and collaborative way. 

Magnitudes of exposures. Ranges of 
blood concentrations varied greatly within 
and between sources of exposure as shown 
in Figure 2. Although we had anticipated 
that endogenous and food chemicals would 
havesimilar blood levels, weweresurprised to 
observe the near-per 	1ect overlap of concentra- 
tions of these chemicals with the ee of drugs. 
Such similar cumulative distributions sug-
gest that blood concentrationsof endogenous 
human metabol ites and food chemicals are 
in the therapeutic range of pharmacologic 
agents. We were also somewhat surprised to 
observe that blood concentrations of pollut-
ants were 1,000 times lower than those of 
chemicals from other categories. Such dis-
parate blood levels across exposure sources 
awaken arguments by Ames and colleagues 
that natural toxins and protective chemicals 
are consumed in much greater quantities than 
synthetic chemicals and, therefore, should be 
considered when asasing disease risks (Ames 
1983; Ameset al. 1987, 1990a, 1990b). This 
further emphasizes the importance of EWAS 
for interrogating all chemicals that can cause 
chronic dices. 

Epidemiology and systems biology. 
Weighting chemicals by blood concentrations 
(Figure 3A), epidemiological (risk factor) cita-
tions (Figure 3B), or human metabolic path-
ways (Figure 3C) altered the appearances of 
chemical-similarity mars. Epidemiological 
citations downgraded the importance of 
endogenous molecules while upgrading pol-
lutants and drugs, but weighting by num-
bers of metabolic pathways had the opposite 
effect. These markedly different maps were 
unanticipated because it is generally thought 
that epidemiology and systems biology work 
hand in glove to elucidate causes and mecha-
nisms of disease (N icholson et al. 2012b). 

Epiclemiolog ists are interested in causes 
of disease, including genetic factors (G) and 
exposures (E) related to metabolism, diet, pol-
lution, infections, lifestyles, and behaviors. 
When they have used blood concentrations 
to quantify chemical exposures from G, E, 
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and G x E, epidemiologists have successfully 
linked chronic diEeSSES to targeted endorynous 
and exorynous chemicals (Figures 1 and 3B). 
We assumed that chemicals that had been 
repeatedly associated with chronic diseases 
(Figure 3B) would be logical candidates for 
exploration of metabolic pathways. However, 
because only 29% of the chemicals in our 
database with three or more PubMed risk-
fxtor citations also had a BicsA,stems hit (i.e., 
189/658), this wffi apparently not thee. 

Systems biologists focus on metabolic 
pathways that are under homttslatic control 
and, therefore, presume a G-centric hier-
archy that culminates in the endogenous 
metabolome (Nicholson et al. 2012b). From 
the systems-biology perspective, the most 
meaningful metabolites are those that partici-
pate in !miry pathways (Lcscalzo et al. 2007), 
and Figure 3C points to products of energy 
metabolism and crcntial nutrients as filling 
that role. If such molecules can be linked to 
disease, then their concentrations can promote 
early diagncsis and treatment even if causal E 
and G x E factors are unknown. For example, 
high concentrations of branched-chain amino 
acids (leucine, isoleucine, and val ine) predict 
incipient diabetes and offeravenues for treat - 
rrent (Newgard 2012; Wang TJ et al. 2011). 
However, the poor track record of GWAS in 
explaining the variation of chronic diseases 
suggests that systerrs biologists who look only 
at endogenous metabolites (i.e., molecules 
produced under human genomic control) will 
miss opportunities to discover causal path-
ways. Indeed, of the 41,000 small molecules 
currently thought to populate the human 
body (Wishart et al. 2013), only 2,626 (6.4%) 
(Recon X 2013) are products of endogenous 
human r 	r eldcol ism. 

Thenicrthicme. When considering G and 
G x  Eeffects,it is important to reTrunber that 
90% of the approxinkilely 1014  cells in the 
hurilal body actually reside in the gut micro-
biota (Savage 1977). Thisuper organism con-
tributes - 500,000 microbial protein-coding 
genes (Qin et al. 2010) compared with a 
human complement of - 20,000 protein-cod-
ing gam. ThudAlma-1 bio specimens contain 
a plethora of bioactive molecules generated 
from microbial metabolism (Nicholson et al. 
2012a) in addition to chemicals introduced 
by the diet, drugs, infectious organisms, pol-
lution, and lifestyle factors (Nicholson and 
Wilson 2003; Rappaport and Smith 2010). 
Chemicals produced by the microbiota con-
trol development and maintenance of the 
human immune system as well as important 
cell-signaling procccom (Nicholson et al. 
2012a) and appear to be intimately involved 
in development of chronic deleaSeS (Blumberg 
and Powrie 2012; Hair and Turnbaugh 
2012). Although research involving microbial 
contributions to the human exposome is in  

its infancy, it should expand dramatically as 
the important roles played by the microbiota 
are razignized in disease etiolocy (Kceth et al. 
2013; Riclaura et al. 2013; Tang et al. 2013; 
Wang Z et al. 2011). 

Internal and external measures of 
exposure. To discover unknown exposures 
that cause disease, we advocate data-driven 
EWAS that profilechemicals in blood from 
disease cases and controls (Rappaport 2012). 
Internal measures of exposure, such as the 
blood exposome, offeraclvantages for EWAS 
because they represent all sources of chemi-
cals, including those generated inside the 
body, and blood speci mens are often archived 
in pirspertive cohort studies (Rappaport and 
Smith 2010). As EWAS discover new disease 
associations, knowledge-driven studies will be 
needed to curate exposure sources and quan- 
tify exposure-response relationshipo 	thereby 
strengthening causal inferences—and to sug-
gest interventions (Rappaport 2012). To the 
extent that important exposures originate 
outside the body, this follow-up will involve 
exposure scientists, industrial hygienists, 
food scientists, and analytical chemists who 
meEsure chemicals in air, water, and food, as 
well as biologists who evaluate mechan isms of 
action (Lioy and Rappaport 2011; Rappaport 
2011; Scalbert et al. 2014; Wild 2012). Thus, 
the process of identifying causal exposures 
can require meEsurtlients of chemicals both 
inside and outside the body across a diverse  
scientific milieu. 

Limitations. Because we relied on pub-
I ical I y axesible data, our findingsand their 
interpretation are conditioned by the chemi-
cals oompi led by the H M DB and N HANES 
and by publications and metabolic path-
ways curated through the National Center 
for Biotechnology Information. Most of the 
1,561 chemicals we investigated in human 
blood were derived from foods and endog- 
enous prooc 	because thc:c are major foci 
of the H M DB. Most of the pollutants in our 
database were reported by N HANES. Yet, we 
exclued a roughly equal number of other pol-
lutants in N HANES because they were not 
detected in most blood samples (CDC 2009, 
2012, 2013). If nondetects from N HANES 
had been included, the shift toward lower 
blood concentrations of pollutants relative to 
chemicals from other sources would have been 
even greater. We also recognize that some of 
our data could be biased. For example, using 
PubMed citations to assas disease associations 
of particular exposures can introduce biases 
related to prior publications and to research 
priorities for different diseases, numbers of 
investigators, journals, and so on. As noted 
previously, the Bicsystems database of human 
metabolic pathways reflects apparent biases 
favoring chemicals that are involved in many 
pathways regardless of disease associations. 

Finally, we were unable to investigate possible 
effectscf chemical interactions on disease risks. 
Despite these limitations, the vast diversity 
and concentration ranges of blood chemicals 
should be apparent, as should differences in 
median blood concentrations observed across 
source categories (Figures 2 and 3). 

Conclusions 
Thextreme complexity and dynamic range 
of the blood exposome (Figures 2 and 3) 
should motivate data-driven studies to dis-
cover unknown causes of chronic diseases, 
regardless of their exogenous and endoge-
nous origins (Rappaport 2012). Candidate 
exposures can be identified by EWAS that 
compare omic profilesin blood from diseased 
and healthy subjects. 

Thapparent disconnect between chemical-
specific dime risks (Figure 3B) and human 
metabolic pathways (Figure 3C) indicates that 
systems biologists are only marginally engaged 
in elucidating causal disease pathways. We 
promote a more global approach to systems 
biology (Nicholson and Wilson 2003) that 
expands beyond the endogenous metabolome 
to the blood exposome, illustrated here by a 
large sample of circulating small molecules and 
inorg.ffiicspecies. 

Perhaps the most compelling reason for 
embracing the blood exposome is the potential 
to discover all chemicals that case disease and 
then to intervene in order to modify expo-
sures and the concomitant burden of disease 
(Christiani 2011). The current inventory of 
smal I molecules and metals associated with 
chronic diseases consists of about 300 chemi-
cals that have been targeted repeatedly in epi-
demiological and clinical studies (Figure 3B). 
With recognition of their health significance, 
thccc chemicals have been routinely moni-
tored for clinical interventions (e.g., choles-
terol, folic acid, vitamins) and as regulated 
pollutants (e.g., lead, arsenic, benzene, PCBs). 
Yet, further scrutiny of these recognized health 
hazards adds little to our understanding of 
disease causation. If we expert to reduce the 
burden of chronic diseases, it is time to find 
the undiscovered health-impairing and health-
promoting chemicals to which humans are 
exposed (Figure 1), not only small molecules 
and metals but also proteins and foreign 
DNAand RNA. 
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